If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-17.2t=25
We move all terms to the left:
4.9t^2-17.2t-(25)=0
a = 4.9; b = -17.2; c = -25;
Δ = b2-4ac
Δ = -17.22-4·4.9·(-25)
Δ = 785.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17.2)-\sqrt{785.84}}{2*4.9}=\frac{17.2-\sqrt{785.84}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17.2)+\sqrt{785.84}}{2*4.9}=\frac{17.2+\sqrt{785.84}}{9.8} $
| 4x+3-10x=25-6x | | -9p+10p=4 | | 63=7(4+2x | | 11x+8-8x=-48-5x | | u+2u+u=12 | | 2(x-3)+6x=8x-6 | | 12m+m+3m-14m=20 | | -(5x+2)-3(3-x)=-1 | | 2(x−3)+6x=8x−6 | | 1/7=x/56 | | -24x+18x=3(-9-3x) | | 18x-(-4x)+-12x+20x=10 | | 9(12-4x)=-324 | | 15(2x+9)=5(3x+39) | | -2(9-3x)+7x=-5 | | 2/14=x/56 | | 3x+18-2x=43 | | -2r+-10r-(-16r)+-5r=17 | | 10-7x+14=2x+24-9x | | 91=2(3x+5)+3(5x-1) | | 4(2m-3)-4m=3(2m-4) | | 11x+28-7x=-21-3x | | 5-7x+13=5x+18-12x | | -5x+-9x=-14 | | 4g-6g-3g=-10 | | 12=b/8 | | 18=-(-2x-4) | | 3(x-7)+6x=9x-2 | | 5(m-12)-24=3(5m+2) | | 4t-3t+4t-3t+t=18 | | 3(x−7)+6x=9x−21 | | 64=e |